MODA: an efficient algorithm for network motif discovery in biological networks.

نویسندگان

  • Saeed Omidi
  • Falk Schreiber
  • Ali Masoudi-Nejad
چکیده

In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

An Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems

An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...

متن کامل

Cluster Based Cross Layer Intelligent Service Discovery for Mobile Ad-Hoc Networks

The ability to discover services in Mobile Ad hoc Network (MANET) is a major prerequisite. Cluster basedcross layer intelligent service discovery for MANET (CBISD) is cluster based architecture, caching ofsemantic details of services and intelligent forwarding using network layer mechanisms. The cluster basedarchitecture using semantic knowledge provides scalability and accuracy. Also, the mini...

متن کامل

An Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks

This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...

متن کامل

An Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks

This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & genetic systems

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2009